
Final Report - SS4850

Emiliano Penaloza
Anthony Rinaldi

April 19, 2022

Table of Contents
1 Introduction 2

2 Dataset 2

3 Methods 3
3.1 Exploratory Data Analysis . 3
3.2 Existing Methods . 3
3.3 Transformers vs GRUs . 3
3.4 Monte Carlo Tree Search . 4
3.5 Proposed Models . 5
3.6 Training Setting . 6
3.7 Testing Setting . 7

4 Results 7
4.1 Exploratory Data Analysis . 7
4.2 Main Data Analysis . 9

5 Conclusion and Discussion 10

6 Future Works 12

7 Appendix 13

8 References 33

1

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

1 Introduction

The way in which most people/agents negotiate and come to a decision based on differing prefer-
ences and goals is through the use of natural language. This is a complex problem because one
must determine their intent, find a way to communicate this to another agent, and understand the
intent of the other agent. What makes this scenario even more complex is the use of deceit, which
is difficult to ascertain, but also very common in human negotiations [6]. Negotiation dialogues
can take on many different forms depending on the agents involved (e.g., cooperative or aggressive)
and each agent must come up with utterances (sequences of words) to help them achieve their goal
in the negotiation.

We take a similar approach to Lewis et al. [5] using a very large one-on-one negotiation dataset
to train neural negotiation agents. These agents learn to negotiate by maximizing the likelihood
of copying human actions and are further refined by using reinforcement learning (RL) when
negotiating against one another. Reinforcement learning forces the agent to maximize their reward,
rather than simply copying human actions; possibly giving the agents skills that never would be
exhibited by human participants. We supplement these models with the use of the Monte Carlo
tree search (MCTS) algorithm to estimate the expected reward of different utterances. MCTS has
been widely successful in strategic games which is why we expect it to perform well in strategic
negotiations [2].

We study these negotiations by using a dataset of semi-cooperative dialogues between participants.
Participants are shown a set of objects (books, balls, and hats), each with a specific value and are
tasked with maximizing their value by determining how to divide the objects between themselves
and another participant. Participants are unaware of the value function of the other agent.

The remainder of the paper is organized as follows: §2 gives an overview of the negotiation dataset
used in the paper. §3 introduces both the exploratory and main methodology of the paper.
§4 describes the main results of the paper. §5 concludes the paper with discussion about the
implications of the results and §6 proposes future works.

2 Dataset

The dataset consists of 5,808 dialogues collected using Amazon’s Mechanical Turk, a crowdsourcing
service that gathers freelance workers to complete on-demand tasks that computers are unable to
do. Each dialogue consists of two human agents engaging in a negotiation aiming to maximize their
total reward. The two agents negotiate over 5-7 total items each of which belongs to one of three
categories: hats, balls and books. The negotiation begins by providing each agent with a different
randomly generated value function where the total value of all items is 10 for each agent and no
item has a zero reward for both users. The agents then engage in conversation until one of them
declares that an agreement has been made which marks the end of the negotiation. Thereafter,
each agent declares the agreed-upon number of items assigned to each agent, if both agents agree on
the decision, the appropriate rewards are assigned, if they disagree, they are both assigned a total
reward of zero. This methodology of gathering dialogues yielded 2,236 different scenarios (unique
value functions and number of items). An example scenario and the corresponding dialogue can be
seen in Table 1 and Figure 1, respectively. As previously mentioned, the data is publicly available
in the following repository: https://github.com/facebookresearch/end-to-end-negotiator.

2

https://github.com/facebookresearch/end-to-end-negotiator

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

Hat Ball Book
Amount of items in pool 1 2 3
Agent 1 value function 4 0 2
Agent 2 value function 1 3 1

Table 1: Example Scenario

Dialogue:

Agent 1: I want the books and the hats, you get the ball
Agent 2: Give me a book too and we have a deal
Agent 1: Ok, deal
Agent 2: <choose>

Figure 1: Example Dialogue

3 Methods

3.1 Exploratory Data Analysis

The data used in this report is quite unique and traditional data analysis methods will not be very
useful. Most of the data are English sentences, which we cannot easily visualize. One approach
we will use is plotting the frequency of words used, however, this is not used in modelling and will
only be used to understand the language in the dialogues. The other visualizations we will consider
involve the score of each agent and their value functions. We will plot the distribution of the final
score for the player negotiating first and the player negotiating second. We will view the number
of Pareto optimal outcomes.1 We will view the distribution of number of turns and number of
words per turn across all negotiations. Finally, we will consider the relationship between some of
these variables, such as the score of a game versus the number of turns in a game. Not all of the
exploratory data analysis will be useful in this report, thus we will only include significant findings
in the final report.

3.2 Existing Methods

Lewis et al. [5] proposed four model architectures to build a conversational negotiation agent.
They first propose a model that is trained by optimizing the log-likelihood of the predicted token
plus the log-likelihood of the output choice. Thereafter, they propose a model that is, first trained
as the previous log-likelihood model, but then fine-tuned by selecting the utterance with the
maximum expected reward. Finally, they proposed utterance rollouts for action selection, which
can be combined with either of the stated models. We propose to improve these models by using
Monte Carlo Tree Search (MCTS) and Transformers. We propose eight new methods.

3.3 Transformers vs GRUs

In the original work, Lewis et al. [5] propose a GRU (Gated Recurrent Unit) model architec-
ture. We propose using Transformers in preference to GRUs. Given the large amount of empirical
evidence showing that Transformers outperform GRU-based architectures [4], it is an intuitive
suggestion. Transformers, initially proposed by Vaswani et al. [7] are neural network architectures
that aim to replace traditional convolutional and recurrent networks. They have been shown to out-
perform said networks in language and vision tasks by exploiting multi-head self-attention. Unlike
traditional recurrent or convolutional layers, through the use of multi-head attention, transformers
are able to predict the output sequence by attending to the most relevant previous information.

1A solution is Pareto optimal if neither agent’s score can be improved without lowering the other’s score.

3

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

Lewis et al. [5] GRU Architecture Proposed Transformer Architecture

hg = GRUg(g)
ht = GRUw(ht−1, [Ext−1,hg])
ho⇆

t = GRUo⇆(ho⇆
t±1, [Ext,ht])

ha
t = W [tanh(W ′ho⇆

t)]
αt = exp(w·ha

t)∑
t exp(w·ha

t)

hs = tanh(W s[hg,
∑

t αtht])

hg = GRUg(g)
ht = GRUw(ht−1, [Ext−1,hg])
ho = Transo([Ex,ht])
ha = W [tanh(W ′ho)]
αt = exp(w·ha[t])

exp(w·ha)
hs = tanh(W s[hg,

∑
t αtht)

Table 2: Model Architectures

Figure 2: Transformer Encoder Architecture

This method not only, on average, yields improved performance but allows for parallelization
when training the network. This is because each head in the layer is summative rather than a
product, allowing for faster gradient calculations. For a comparison between our proposed model
architecture and the one proposed by Lewis et al. [5] please refer to Table 2. We expect that
by introducing a Transformer, we will not only achieve a higher average score but produce more
human-like utterances.

We will not be using a complete Transformer architecture, rather will be using just a single encoder
layer. The network layout for the encoder can be seen in Figure 2. This architecture includes the
powerful multi-head attention, along with a feed-forward layer, making this attention global. This
means that after attention scores are calculated, a fully connected layer is used so that every point
in the sequence can be connected to one another (i.e., global). We do not use the decoder part of the
model because this is typically used for sentence-to-sentence modelling. Since our approach takes
in a complete dialogue and generates the agent’s item choices, there is no sequence-to-sequence
modelling so the decoder is not necessary. The code used to create the transformer model and
make predictions with it can be found in Code 11.

3.4 Monte Carlo Tree Search

This algorithm is similar to the rollouts algorithm that Lewis et al. [5] propose in the report.
The key difference is that MCTS builds a game tree and simulates many rollouts to determine the
optimal action given the current state/node. Once the actions are proposed, only those that are
the most successful given the current state are expanded upon and simulated (rolled out) further.
Since the algorithm uses an Upper Confidence Bound (UCB) to weight which node to expand, it
is able to explore a much larger state space than a traditional rollout algorithm. Additionally,

4

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

MCTS explores a larger state space in a more computationally efficient matter. Since MCTS
does not require expansion of every node but uses UCB to weight its options, it only explores the
most promising nodes, marginally reducing the computational cost. Yet even with the reduced
expansion, MCTS still achieves higher performance by searching into a deeper state space. Due to
this, we expect MCTS to out-perform the traditional rollout method, and produce more relevant
and fluent utterances. The MCTS description can be found in Algorithm 1.

The UCB formula is shown below in equation (1). The UCB gives us a number that represents
the trade-off between exploring (trying new actions) and exploiting (reusing actions that we know
have a good result). In the equation, si represents the total score of node i, ni represents the
number of times node i has been visited, C is a constant that we set to its typical value of 2, and
Ni represents the number of times the parent of node i has been visited.

UCBi = si

ni
+C ·

√
logNi

ni
(1)

The class we implement for MCTS can be found in Code 12. This class has the ability to understand
its opponent’s turn, and thereafter perform MCTS to determine its best response. After the
opponent gives their response the class will generate five unique possible responses. From there, it
will iterate through 50 simulations of the MCTS algorithm, determining which of the five responses
will result in the highest score. It then chooses the response that results in the highest score as its
next action.

3.5 Proposed Models

We propose eight additional models expanding upon Lewis et al.’s [5] initial four. These models
will be evaluated on the same dataset as the original four. In order to be computationally efficient,
all hyperparameters will be selected using a validation dataset similar to Lewis et al. [5].

1. Supervised model with probabilistic sampling with addition of transformers

2. Supervised model, rollout dialogue (likelihood evaluation) with addition of transformers

3. RL, likelihood dialogue (one-step expected reward) with addition of transformers

4. RL, rollout dialogue (expected reward) with addition of transformers

5. Supervised model, MCTS dialogue (likelihood evaluation) with addition of transformers

6. Supervised-model, MCTS dialogue (likelihood evaluation) base GRUs

7. RL, MCTS dialogue (expected reward) base GRUs

8. RL, MCTS dialogue (expected reward) with addition of transformers

All hyper-parameters; number of layers, layer depth, discount factor, output importance α, learning
rate, and batch size were determined using cross-validation on a smaller validation dataset.

5

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

Algorithm 1: MCTS For Negotiation Dialogue
Result: Get the next best word based on Monte Carlo simulation
Input : Dialogue History (i.e., x1,...,k), items, value function, number of iterations
Output: Utterance to finish turn (i.e., xk+1,...,k+n)

1 Initialize the root node of the game tree
2 while current iteration < number of iterations do
3 Traverse the tree downwards until reaching a leaf node, selecting subsequent nodes that

have the largest UCF score
4 if node has been visited before then
5 Expand the node to have children (each child is a dialogue for a full turn)
6 Select the first child as the current node
7 else
8 Select the leaf node as the current node
9 end

10 Rollout to the end of the dialogue on the current node by sampling the likelihood function
of tokens

11 Make selections for the items based on the dialogue that occurs during the rollout
12 Calculate the score of the game given the value function of the player
13 Backpropogate the results:
14 Add the score of the game recursively to every parent node until reaching the root node
15 Increment the times visited variable of every parent recursively until reaching the root

node
16 Increment current iteration
17 end
18 Return the utterance with the highest average score

3.6 Training Setting

Model training will consist of supervised learning based on a training set of recorded dialogues and
RL against another fitted model. This will give us two models: (1) supervised and (2) supervised +
RL. With these models, we can apply rollouts and MCTS when competing against another player
to see how the models perform. Supervised training takes the typical steps of deep learning: pass
a batch through the network to calculate the output, calculate a loss function, backpropagate the
error, calculate the new parameter estimates, and repeat. We found poor model performance using
the same hyperparameters suggested by Lewis et al. [5], so implemented a Bayesian parameter
tuning approach. This uses the optuna package in Python to determine the best parameters
given priors and the observation likelihood. The code for the hyperparameter tuning can be
found in Code 13. Thereafter we fit model (1) using the entire training dataset and the optimal
hyperparameters. We then perform RL on model (1) to generate model (2). This is done by
allowing model (1) to play a version of itself and work on optimizing the reward it receives from
the negotiation.2 For parameter stability, only one version of the model is trained with RL at a
time, while the other is held constant. Further, we intertwine supervised training into the process
as well so that the model does not deviate from the English language. We do so after every four
iterations of RL, with a small learning rate to not take away from the RL process. The code for

2Code 14 contains the code that generates a dialogue between two models, which is used in this process.

6

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

0

10000

20000

ha
t

bo
ok

ba
ll

ca
n

de
al

ta
ke

ne
ed

on
e

lik
e

ge
t

ok re
st

giv
e

tw
o

wan
t

will
ok

ay els
ev

er
yth

jus
t

Word

C
ou

nt
Top 20 Word Counts Across All Dialogues

Figure 3: Top 20 Words and their Count

The figure shows the most common words used
across both players throughout all negotiation
dialogues.

the RL training process can be found in Code 15. The code for the agent/player that trains itself
by playing in the mentioned RL training process can be found in Code 16.

3.7 Testing Setting

Testing the models is very different than a typical supervised learning approach (e.g., classifier
accuracy). If we were to evaluate our models by how well they perform on the dialogues we have,
this would simply give a measure of similarity between our model’s predictions and a human’s
sentences. However, we do not wish for our model to simply imitate humans, we want it to
understand how to negotiate and maximize its reward. This gives it more of an RL evaluation
than a supervised learning evaluation. To evaluate each model’s performance we put it head-to-
head against the most basic model we have: the supervised Transformer model. These models are
given 8,172 different scenarios (i.e., items and value functions) and engage in dialogue. The scores
are recorded, along with if there was agreement, and if the outcome is Pareto optimal. These
scores are then aggregated across all scenarios to see how the proposed model performs relative
to a baseline model. Here we can also choose to apply rollouts, MCTS, or neither to supplement
the model that is undergoing evaluation. This is the same method that Lewis et al. [5] used to
evaluate their models.

4 Results

4.1 Exploratory Data Analysis

We first look at the most common words used in the dialogues. This helps us determine the level
of sophistication of the negotiations. Figure 3 shows the top 20 words used in the dialogues along
with their respective word count (see Code 7 for the R code). Quite logically we see the top three
words are the items that the players are trying to divide. The remaining words all seem typical of a
negotiation dialogue with words like need and deal. The level of sophistication of these dialogues is
quite low since we see no complex words; it is all very simple English. This means the model should
be able to learn how to negotiate quite easily since the complexity of the language is low.

To understand the level of sophistication further, we view the distribution of the number of turns
and the number of words used per turn. Figure 4 shows that most negotiations terminate in less
than the maximum 20 turns allowed (see Code 8 for the R code). The majority of negotiations

7

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

0

500

1000

1500

2000

5 10 15 20
Turns

C
ou

nt
Distribution of Number of Turns

0.00

0.05

0.10

0.15

5 10 15 20
Words per Turn

C
ou

nt

Distribution of Words per Turn

Left: number of turns taken to complete a negotiation. Right: average number of words used per turn in a
dialogue.

Figure 4: Distribution of Turns and Words per Turn

finish in less than seven turns. This supports the previous conclusions that the negotiations cannot
be extremely complex if they only take a few turns to arrive at an agreement. Further, Figure 4
also shows that there are very few words used per turn. With less than 10 words used per turn
in most cases, it is unlikely that these negotiations are highly sophisticated. This supports the
previous conclusion and indicates that the model should be able to learn the dialogues relatively
easily.

Next, we try and understand the score of the agents better. First, we compare the score of
each player in Figure 5 where we added jitter to the points so we can see the density at each
score combination (see Code 9 for the R code). Players generally do not need to sacrifice their
score for the other player to achieve a higher score. The plot shows that it is possible for both
players to achieve a high score simultaneously (although not once did both players score a perfect
10). The most common scores are when both players score between six and eight. We also try
and understand if the score of the game will increase as there are more turns. We expect this
relationship since the players can better communicate their needs with more turns and get higher
scores. The right side of Figure 5 shows the combined scores of both players versus the length
of the dialogue. We actually see the inverse relationship than we expected; as there are more
turns, the average combined score is lower. This could possibly be explained by irrational human
behaviour such as the endowment effect where people think that the things they perceive to own
are worth more and are less willing to give them up [3]. This result is counterintuitive and has
implications for our model. We may seek to develop a model that attempts to end the negotiation
as quickly as possible since that seems to produce better results.

Finally, we compare the score of a player to their positions in the dialogue (i.e., first or second).
We expect that the player who goes first will have a higher score since they can set a reference
point in the dialogue that all discussions will be based around (known as an anchoring point in

8

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

2.5

5.0

7.5

10.0

2.5 5.0 7.5 10.0
Score Player 1

S
co

re
 P

la
ye

r
2

Score of Players

10

15

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of Turns

S
co

re

Combined Score Versus Number of Turns

Left: comparison of scores of each player. Right: how scores vary as the length of dialogue varies.

Figure 5: Score Distributions

behavioural economics [1]). Figure 6 shows that the first player performs better in most cases,
having a higher chance of achieving a higher score (see Code 10 for the R code). Further, the first
player tends to achieve a perfect score at twice the rate of the second player. This finding agrees
with our prior understanding of one-on-one negotiations.

4.2 Main Data Analysis

We carry out the training and testing steps mentioned in §3. This results in four models: (1)
Transformer, (2) Transformer + RL, (3) Base GRU, and (4) Base GRU + RL. The baseline model
we will use as our default agent to negotiate against other models is model (1). The default agent
is compared to both model (1) and model (2) while using rollouts, MCTS, or no modifications on
the latter two models. This gives us six groups of dialogues to analyze. Thereafter we compare
model (3) and model (4), both with MCTS, to the default agent. This gives an additional two
groups of dialogues to analyze, giving eight groups in total. These eight groups correspond to the
eight new models we proposed, each compared to the default agent.

These groups of dialogues are individually analyzed to get the average score of each agent, the
average score of each agent conditioned that the agents agreed, the agreement rate, and the
proportion of Pareto optimal outcomes. These results are presented Table 3.

The model that performed the best in almost all metrics is the Transformer model that uses
rollouts when competing against other agents. This is an unexpected result since we thought the
best model would utilize MCTS given the algorithm’s success in other domains.

We note that the RL is not successful at all and seems to be working in favour of the opponent
instead of itself. Comparing any model without RL to its equivalent with RL shows that there is a
significant score decrease. This is quite strange and we propose some reasons for this phenomenon

9

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

0

400

800

1200

2.5 5.0 7.5 10.0
Score

C
ou

nt

Order

Second

First

Score Versus Order of Dialogue

Figure 6: Distribution of Score versus Starting
Player

This chart compares the number of times a player
received a certain score based on if they were the first
player to initiate the dialogue or the second player.

shortly. Also note that for all the Transformer models, the addition of RL increases the agreement
rate significantly. It seems that the model is choosing to agree easier, at the expense of its score.
This is a unique result but not the intention of using RL.

A possible flaw in the RL version of the model is the lack of hyperparameter tuning. Hyperpa-
rameters are just as important as in the supervised case but training takes much longer, making
it difficult to tune. Each supervised model takes around 10-20 minutes to train, whereas an RL
model takes around three hours. It is not feasible to train many RL models with different hyper-
parameters and assess which is the best. With more powerful devices, we may have been able to
tune the parameters better for RL and get a better performing RL model, but we, unfortunately,
did not have access to powerful computing resources.

We also note that all the agreement rates are much higher than those of the models proposed by
Lewis et al. [5]. Since the part of the model responsible for generating sentences (encoder and
decoder) is the same in our architecture and theirs, this difference can be attributed to the part
of the model that makes the item selection. We can think of this as every dialogue being the
exact same between our model and their model, but the item selections are the only difference.
The difference in agreement rates is only attributable to the model being able to understand the
dialogue and come up with the right item selection numbers. The Transformer is better able to
predict the item selections given the dialogue compared to the GRU since it has a significantly
higher agreement rate.

5 Conclusion and Discussion

We find that our model works well in dialogues and produces real English sentences. Along with
generating coherent sentences, the model also negotiates quite well and can achieve a high score
while not sacrificing the opponent’s score. There is quite a high ratio of Pareto optimal outcomes,
indicating the negotiations are equally beneficial for both parties, which is a preferred outcome. The
model is also very agreeable, improving the rate greatly compared to previous approaches.

The second major finding is that MCTS does not provide a significant benefit over rollouts. Com-
paring the TRANSFORMER + ROLLOUTS to TRANSFORMER + MCTS we see that the rollouts perform
better in most cases. We hypothesize that this is the case because the length of the game is quite
short, averaging around seven turns per dialogue. MCTS was proposed to sample a large and
deep action space as a way to approximate the value of a node in a dense game tree. Since these

10

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

vs. LIKELIHOOD

Model Score
(all)

Score
(agreed)

%
Agreed

% Pareto
Optimal

TRANSFORMER LIKELIHOOD 4.9 vs. 4.8 5.2 vs. 5.2 93.9 30.2
TRANSFORMER + ROLLOUTS 6.5 vs. 5.0 6.8 vs. 5.2 95.9 42.0

TRANSFORMER RL 3.7 vs. 6.6 3.7 vs. 6.5 98.9 36.6
TRANSFORMER + RL + ROLLOUTS 4.0 vs. 6.5 4.1 vs. 6.6 99.1 39.4

TRANSFORMER + MCTS 6.0 vs. 4.8 6.4 vs. 5.1 94.2 37.1
BASE RNN + MCTS 6.0 vs. 4.9 6.3 vs. 5.2 95.1 39.3

BASE RNN + RL + MCTS 6.0 vs. 5.0 6.3 vs. 5.2 94.9 40.8
TRANSFORMER + RL + MCTS 4.0 vs. 6.5 4.0 vs. 6.6 98.6 39.1

Table 3: Model Performance

dialogues are short the game tree is not too dense, meaning there are not many actions to sample
from. Compared to rollouts there isn’t much of a difference because rolling out a few candidates
will cover a majority of the possible actions, making it more equivalent to MCTS.

MCTS is also meant to be used in scenarios where there are many potential (equally likely) moves.
In our scenario, the dialogue for a given agent is essentially unimodal given the previous turns
in the negotiation. This means that there are not many possible actions, rather there is one
very likely action, with all other actions being very unlikely. This makes the dialogue somewhat
deterministic. If we use rollouts, we will be sampling the most likely actions and this will inform
us more about the likely outcome, compared to using MCTS and forcing the model to consider
different actions when they are not all likely. MCTS considers many unlikely responses, meaning
it is collecting unnecessary information about the action space and potentially misinforming itself
about the most rewarding action.

Since we choose to sample the distribution of actions/responses to determine possible next moves,
we are not actually considering all possible next turns. A possible turn would include any com-
bination of any amount of the words in the game dictionary, meaning the possible action space
would be massive. Even if combinations of words are not actual English, we should still consider
them by MCTS theory, but we do not do this. We limit our game tree to have only the most
probable combination of words, given the probability distribution. As mentioned previously, since
the model is unimodal and almost deterministic there are not many possible actions to consider
from the probability distribution. We found it almost impossible for the model to create five
possible responses, given the previous turns, by randomly sampling the action space. Generating
possible responses at random typically resulted in the same one or two responses being repeated
over and over. This weakens MCTS since there are not many possible actions and makes it more
similar to performing a rollout on a few different candidate responses (i.e., what Lewis et al. [5]
implemented).

In Table 3 we also see that the TRANSFORMER + MCTS slightly outperforms the BASE RNN + MCTS
in the agreed score. This shows that the Transformer has only slightly better performance than the
original GRU network, but not as much of an improvement as we were hoping for. The two also

11

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

have similar agree rates, and the BASE RNN + MCTS has slightly higher Pareto optimality likely
because it is willing to sacrifice its score to benefit its partner’s score. This may be preferred in
some cases, but here we hope to gain as much reward as possible, making the Transformer model
preferred.

6 Future Works

The main adjustment we hope to make in this area in the future is using the Transformer model
for understanding the dialogue better. Currently, we use the Transformer to generate the output
selection, given the dialogue output from the GRU. We expected an improvement given the inherent
sequence-to-sequence nature of the problem. Given that the dialogue generation is also a sequence-
to-sequence problem, we believe the transition from a GRU to a Transformer would be beneficial.
Further, one can also use Long Short-Term Memory (LSTM) cells instead of GRU cells. LSTMs
have one more internal gate than a GRU unit, and thus tend to work better with longer sequences.
The use of LSTMs or a Transformer might result in longer and more sophisticated dialogue than
with GRUs.

We also suggest a different use for the MCTS algorithm be attempted in the future. Since the
number of possible full-turn dialogues is limited and almost deterministic given the previous turns,
we suggest performing MCTS with individual words, rather than with entire turns. This will
generate many more possible turns for the model to consider, giving it a better evaluation of the
action space. This will also increase the computational complexity though since the number of
possible words to use at any point is quite large (above 400). We suggest limiting the scope of
words to the 20 most likely words, rather than using the entire dictionary.

A final task we hope to take on in the future is comparing the model to humans. This is a real
test of performance and will show if our model can negotiate better than humans can. We will
create a web application for this paper, allowing people to compete against the different models
we proposed. We will alternate the model that people play against and aggregate the scores for
each model to see how well they perform against real people.

12

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

7 Appendix

The Python code used in this report is extensive so cannot be entirely included here. We include
the most important R and Python code here and refer the reader here for the entirety of the
code.

List of Code
1 Import Packages . 13
2 Load Data . 13
3 Data Scraping Functions . 13
4 Dataframe Creation . 15
5 Supplemental Functions . 15
6 Supplement Dataframe . 16
7 Word Analysis . 17
8 Plot of Turns and Words per Turn . 17
9 Plot of Score per Player and Score versus Turns . 17
10 Plot of Score versus Dialogue Order . 18
11 Transformer Model Class . 18
12 Monte Carlo Tree Search Agent Class . 22
13 Hyperparameter Tuning . 25
14 Class to Create Dialogues Between Two Players . 28
15 Class for Reinforcement Learning . 30
16 Agent Class for Reinforcement Learning . 31

Code 1: Import Packages
1 library (knitr)
2 library (kableExtra)
3 library (ggplot2)
4 library (tm)
5 library (dplyr)
6 library (tidytext)
7 library (grid)
8 library (gridExtra)

Code 2: Load Data
1 raw_data = scan("data.txt", what = character (), sep = "\n")

Code 3: Data Scraping Functions
1 # function to get the score of a given dialogue
2 get_score = function (values , selections , agree){
3 if (! agree) { return (0)}
4 return (values %*% selections)
5 }
6

7 # function to get the following information from a dialogue :
8 # number of items
9 # value function for each player

10 # Boolean variable indicating the players came to an agreement
11 # the division of items between players
12 # the score of each player

13

https://github.com/anthonyprinaldi/end-to-end-negotiator

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

13 # the words in the dialogue
14 # Boolean variable indicating the player had the first turn
15 #
16 # the function also checks for disconnected sessions and sessions where
17 # the players agreed to disagree
18 get_info = function (row){
19 split_vec = strsplit (row , " ")[[1]]
20 # get the number of items
21 item0 = split_vec [1]
22 item1 = split_vec [3]
23 item2 = split_vec [5]
24 # get the value function
25 value0 = split_vec [2]
26 value1 = split_vec [4]
27 value2 = split_vec [6]
28

29 n = length (split_vec)
30 # get the other player ’s value function
31 othervalue0 = split_vec[n -4]
32 othervalue1 = split_vec[n -2]
33 othervalue2 = split_vec[n]
34

35 # check if the players agreed
36 agree = split_vec[n -6] == "agree"
37

38 # check if the players agreed to disagree
39 no_agree = regmatches (row , regexpr ("(?<=< selection >)(.*)(?=<eos >)", row , perl

=T)) == " no agreement "
40 # check if the players disconnected
41 disconnect = regmatches (row , regexpr ("(?<=< selection >)(.*)(?=<eos >)", row ,

perl=T)) == " disconnect "
42

43 if (no_agree | disconnect){
44 # give 0 score and no selection for disagreement and disconnection
45 selection = NA
46 score = 0
47 other_score = 0
48 agree = FALSE
49 } else {
50 # get the selection of player 1
51 selection0 = strsplit (regmatches (row , regexpr ("item0 =[0 -9]+", row)), "=")

[[1]][2]
52 selection1 = strsplit (regmatches (row , regexpr ("item1 =[0 -9]+", row)), "=")

[[1]][2]
53 selection2 = strsplit (regmatches (row , regexpr ("item2 =[0 -9]+", row)), "=")

[[1]][2]
54

55 selection = as. numeric (c(selection0 , selection1 , selection2))
56

57 # get the score of player 1
58 score = get_score(
59 as. numeric (c(value0 ,value1 , value2)),
60 as. numeric (c(selection0 , selection1 , selection2)),
61 agree
62)
63 # get the score of player 2

14

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

64 other_score = get_score(
65 as. numeric (c(othervalue0 , othervalue1 , othervalue2)),
66 as. numeric (c(item0 , item1 , item2)) - as. numeric (c(selection0 , selection1 ,

selection2)),
67 agree
68)
69 }
70 # get all the words in the dialogue
71 dialogue = regmatches (row , regexpr ("(THEM|YOU)(.+)(<selection >)", row))
72 # check if player 1 went first or second
73 went_first = split_vec [7] == "YOU:"
74

75 return (list(
76 item=as. numeric (c(item0 , item1 , item2)),
77 value=as. numeric (c(value0 ,value1 , value2)),
78 othervalue =as. numeric (c(othervalue0 , othervalue1 , othervalue2)),
79 agree = agree ,
80 selection = selection ,
81 dialogue = dialogue ,
82 score = score ,
83 other_score = other_score ,
84 went_first = went_first
85))
86 }

Code 4: Dataframe Creation
1 # use the get_info function to turn the dialogues into a dataframe
2 df = as.data.frame(t(sapply (raw_data , get_info , USE.NAMES = F)))
3 # format columns to be vectors instead of lists
4 df$agree = as. logical (df$agree)
5 df$ dialogue = as. character (df$ dialogue)
6 df$score = as. numeric (df$score)
7 df$other_score = as. numeric (df$other_score)
8 df$went_first = as. logical (df$went_first)

Code 5: Supplemental Functions
1 # get number of turns
2 get_turns = function (dialogue){
3 people = c("YOU:", "THEM:")
4 split_vec = strsplit (dialogue , " ")[[1]]
5 turns = 0
6 for (i in 1: length (split_vec)){
7 if (split_vec[i] %in% people) {
8 turns = turns + 1
9 }

10 }
11 return (turns)
12 }
13

14 # get the total number of words
15 get_words = function (dialogue){
16 ignore = c("YOU:", "THEM:", ".", "<eos >")
17 split_vec = strsplit (dialogue , " ")[[1]]
18 words = 0
19 for (i in 1: length (split_vec)){

15

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

20 if (! split_vec[i] %in% ignore) {
21 words = words + 1
22 }
23 }
24 return (words)
25 }
26

27 # get possible item divisions
28 get_ choices = function (items){
29 ind = 0
30 res = list ()
31 for (i in 0: items [1]){
32 for (j in 0: items [2]){
33 for(k in 0: items [3]){
34 ind = ind + 1
35 res [[ind]] = c(i, j, k)
36 }
37 }
38 }
39 return (res)
40 }
41

42 # get pareto optimal
43 is_ pareto = function (row){
44 agree = row$agree
45 items = row$item
46 score = row$score
47 other_score = row$other_score
48 values = row$value
49 other_ values = row$ othervalue
50

51 if (! agree) { return (FALSE)}
52

53 choices = get_ choices (items)
54 # iterate through every possible item division in the game
55 for (i in 1: length (choices)){
56 # calculate the scores for the current division
57 curr_ choice = choices [[i]]
58 curr_opp_ choice = items - curr_ choice
59 curr_score = get_score(values , curr_choice , T)
60 curr_opp_score = get_score(other_values , curr_opp_choice , T)
61 # check if both players could be better off
62 if ((curr_score > score & curr_opp_score >= other_score) |
63 (curr_score >= score & curr_opp_score > other_score)){
64 return (FALSE)
65 }
66 }
67 return (TRUE)
68 }

Code 6: Supplement Dataframe
1 # use new functions to add new columns to the data frame
2 df$n_turns = sapply (df$dialogue , get_turns , USE.NAMES = F)
3 df$n_words = sapply (df$dialogue , get_words , USE.NAMES = F)
4 df$avg_words = df$n_words / df$n_turns
5 df$ pareto = apply(df , 1, is_ pareto)

16

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

Code 7: Word Analysis
1 # use corpus to manipulate the words
2 corpus = VCorpus (VectorSource (df$ dialogue))
3 corpus = tm_map(corpus , removeNumbers)
4 corpus = tm_map(corpus , content _ transformer (tolower))
5 # remove stopwords and end of sentence and selection marker
6 corpus = tm_map(corpus , removeWords , c(stopwords (’english ’), "eos", " selection "

))
7 corpus = tm_map(corpus , removePunctuation)
8 corpus = tm_map(corpus , stripWhitespace)
9 corpus = tm_map(corpus , stemDocument)

10

11 # turn the cleaned corpus into a dataframe
12 dialogue _df = data.frame(text = sapply (corpus , as. character), stringsAsFactors =

F)
13

14 # get the count of each word in every dialogue
15 word_df = dialogue _df %>% unnest _ tokens (word , text) %>% count(word , sort = TRUE

)
16 word_df$word = factor (word_df$word , levels = word_df$word[order(word_df$n,

decreasing = T)])
17

18 # plot the count of the top 20 words in all dialogues
19 ggplot (word_df [1:20 ,], aes(y=n, x=word)) +
20 geom_bar(colour ="#69 b3a2", fill="#69 b3a2", stat = " identity ", width =0.5) +
21 ggtitle ("Top 20 Word Counts Across All Dialogues ") +
22 xlab("Word") +
23 ylab("Count") +
24 theme(axis.text.x = element _text(angle = 45, vjust = 0.5))

Code 8: Plot of Turns and Words per Turn
1 # create a separate dataframe for plotting
2 plot_data = df
3 # convert the went_first column to a factor
4 plot_data$went_first = factor (plot_data$went_first , labels = c(" Second ", "First

"))
5

6 # plot the distribution of number of turns
7 p1 = plot_data[plot_data$agree ,] %>%
8 ggplot (aes(x=n_turns)) +
9 geom_bar(colour ="#69 b3a2", fill="#69 b3a2", width = 0.5) +

10 ggtitle (" Distribution of Number of Turns") +
11 xlab("Turns") +
12 ylab("Count")
13

14 # plot the distribution of words per turn
15 p2 = plot_data[plot_data$agree ,] %>%
16 ggplot (aes(x=avg_words)) +
17 geom_ density (colour ="#69 b3a2", fill="#69 b3a2") +
18 ggtitle (" Distribution of Words per Turn") +
19 xlab("Words per Turn") +
20 ylab("Count")
21

22 grid. arrange (p1 ,p2 , ncol =2)

17

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

Code 9: Plot of Score per Player and Score versus Turns
1 # plot the score of each player
2 # adding scatter so we can see the overlap
3 p1 = plot_data[plot_data$agree ,] %>%
4 ggplot (aes(x=score , y=other_score)) +
5 geom_ jitter (alpha = 0.2, cex = 0.5) +
6 ggtitle ("Score of Players ") +
7 xlab("Score Player 1") +
8 ylab("Score Player 2")
9

10 # plot the distribution of score versus number of turns
11 p2 = plot_data[plot_data$agree ,] %>%
12 ggplot (aes(x=as. factor (n_turns), y = score+other_score)) +
13 geom_ boxplot () +
14 ggtitle (" Combined Score Versus Number of Turns") +
15 xlab(" Number of Turns") +
16 ylab("Score")
17

18 grid. arrange (p1 ,p2 , ncol =2)

Code 10: Plot of Score versus Dialogue Order
1 # plot the score versus the dialogue order
2 plot_data[plot_data$agree ,] %>%
3 ggplot (aes(x = score , fill = went_first))+
4 geom_bar(alpha =0.5 , position = " identity ")+
5 ggtitle ("Score Versus Order of Dialogue ")+
6 ylab("Count") +
7 xlab("Score")+
8 scale_fill_ discrete (name="Order")

Code 11: Transformer Model Class
1 import torch
2 import torch.nn as nn
3 import torch.nn. functional as F
4 import torch.nn.init
5 from torch. autograd import Variable
6 import torch.nn. functional as F
7

8 import data
9 from engines . rnn_engine import RnnEngine

10 from domain import get_domain
11 from models .utils import *
12 from models . ctx_encoder import MlpContextEncoder
13

14 class RnnModel (nn. Module):
15 corpus_ty = data. WordCorpus
16 engine_ty = RnnEngine
17

18 def __init__ (self , word_dict , item_dict , context_dict , count_dict , args):
19 super(RnnModel , self). __init__ ()
20 domain = get_domain (args. domain)
21 self. word_dict = word_dict
22 self. item_dict = item_dict
23 self. context_dict = context_dict
24 self. count_dict = count_dict

18

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

25 self.args = args
26

27 self. word_encoder = nn. Embedding (len(self. word_dict), args. nembed_word)
28 self. word_encoder_dropout = nn. Dropout (args. dropout)
29

30 ctx_encoder_ty = MlpContextEncoder
31 self. ctx_encoder = nn. Sequential (
32 ctx_encoder_ty (
33 len(self. context_dict),
34 domain . input_length (),
35 args.nembed_ctx ,
36 args.nhid_ctx ,
37 args.dropout ,
38 args.init_range ,
39),
40 nn. Dropout (args. dropout),
41)
42

43 self. reader = nn.GRU(
44 args. nhid_ctx + args. nembed_word , args.nhid_lang , bias=True
45) # h_t
46 self. reader_dropout = nn. Dropout (args. dropout)
47

48 self. decoder = nn. Sequential (
49 nn. Linear (args.nhid_lang , args. nembed_word), nn. Dropout (args.

dropout)
50)
51

52 self. writer = nn. GRUCell (
53 input_size =args. nhid_ctx + args. nembed_word ,
54 hidden_size =args.nhid_lang ,
55 bias=True ,
56)
57

58 # Tie the weights of reader and writer
59 self. writer . weight_ih = self. reader . weight_ih_l0
60 self. writer . weight_hh = self. reader . weight_hh_l0
61 self. writer . bias_ih = self. reader . bias_ih_l0
62 self. writer . bias_hh = self. reader . bias_hh_l0
63

64 self. sel_rnn = nn. TransformerEncoderLayer (
65 d_model =args. nhid_lang + args. nembed_word , nhead =4, dropout =args.

dropout
66)
67

68 self. sel_dropout = nn. Dropout (args. dropout)
69

70 # Mask for disabling special tokens when generating sentences
71 self. special_token_mask = torch. FloatTensor (len(self. word_dict))
72

73 self. sel_encoder = nn. Sequential (
74 torch.nn. Linear (
75 args. nhid_lang + args. nembed_word + args.nhid_ctx , args.

nhid_sel
76),
77 nn.Tanh (),

19

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

78 nn. Dropout (args. dropout),
79)
80

81 self.attn = nn. Sequential (
82 torch.nn. Linear (args. nhid_lang + args. nembed_word , args. nhid_attn),
83 nn.Tanh (),
84 torch.nn. Linear (args.nhid_attn , 1),
85)
86

87 self. sel_decoders = nn. ModuleList ()
88 for i in range(domain . selection_length ()):
89 self. sel_decoders . append (nn. Linear (args.nhid_sel , len(self.

item_dict)))
90

91 self. init_weights ()
92

93 self. special_token_mask = make_mask (
94 len(word_dict),
95 [word_dict . get_idx (w) for w in ["<unk >", "YOU:", "THEM:", "<pad >"

]],
96)
97

98 def flatten_parameters (self):
99 self. reader . flatten_parameters ()

100 self. sel_rnn . flatten_parameters ()
101

102 def zero_h (self , bsz , nhid=None , copies =None):
103 nhid = self.args. nhid_lang if nhid is None else nhid
104 copies = 1 if copies is None else copies
105 h = torch. Tensor (copies , bsz , nhid).fill_ (0)
106 return Variable (h)
107

108 def word2var (self , word):
109 x = torch. Tensor (1).fill_(self. word_dict . get_idx (word)).long ()
110 return Variable (x)
111

112 def init_weights (self):
113 init_rnn (self.reader , self.args. init_range)
114 init_cont (self.decoder , self.args. init_range)
115 self. word_encoder . weight .data. uniform_ (
116 -self.args.init_range , self.args. init_range
117)
118

119 init_cont (self.attn , self.args. init_range)
120 init_cont (self. sel_encoder , self.args. init_range)
121 init_cont (self. sel_decoders , self.args. init_range)
122

123 def forward_context (self , ctx):
124 ctx_h = self. ctx_encoder (ctx). unsqueeze (0)
125 return ctx_h
126

127 def forward_lm (self , inpt_emb , lang_h , ctx_h):
128 # append the context embedding to every input word embedding
129 ctx_h_rep = ctx_h. narrow (0, ctx_h.size (0) - 1, 1). expand (
130 inpt_emb .size (0) , ctx_h.size (1) , ctx_h.size (2)
131)

20

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

132 inpt_emb = torch.cat ([inpt_emb , ctx_h_rep], 2)
133 # n_words x (ctx_h size {64} + inpt size {256})
134 # combine word embeddings and context (g) embeddings
135

136 lang_hs , _ = self. reader (inpt_emb , lang_h)
137 lang_hs = self. reader_dropout (lang_hs) # n_words x 128 (nhid_lang)
138

139 decoded = self. decoder (lang_hs .view (-1, lang_hs .size (2)))
140 # n_words x 256 (nembed_word)
141

142 out = F. linear (decoded , self. word_encoder . weight)
143 # n_words x 463 (encoder size)
144

145 return out , lang_hs
146

147 def forward_selection (self , inpt_emb , lang_h , ctx_h):
148 # run a birnn over the concatenation of the input embeddings and

language model hidden states
149 h = torch.cat ([lang_h , inpt_emb], 2)
150 # n_words x (256 + 128)
151 # combine word imbeddings and output of second GRU
152

153 attn_h = self. zero_h (h.size (1) , self.args.nhid_attn , copies =2)
154 # 2 x 64 (nhid_attn)
155 # initial hidden state of the third GRU
156 # n_words x 128 (nhid_attn x 2) b/c bidirectional
157

158 h = self. sel_rnn (h)
159

160 # h = self. sel_dropout (h)
161

162 h = h. transpose (0, 1). contiguous ()
163 # batch_size x n_words x 128
164

165 logit = self.attn(h.view (-1, self.args. nhid_lang + self.args.
nembed_word)).view(

166 h.size (0) , h.size (1)
167)
168 # first removes the batch dimension
169 # then calculates attn (Linear , Tanh , Linear)
170 # batch_size x n_words
171 # this is h_t^a
172

173 prob = F. softmax (logit , dim =1). unsqueeze (2). expand_as (h)
174 # batch_size x n_words x 128
175 # these are all the same along the last dimension
176 # these are the alpha_t
177

178 attn = (
179 torch.sum(torch.mul(h, prob), 1, keepdim =True). transpose (0, 1).

contiguous ()
180)
181 # 1 x 1 x 128
182

183 h = torch.cat ([attn , ctx_h], 2). squeeze (0)
184 # concatenate the context vector (g) and the attention scores

21

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

185 # 1 x 1 x 192
186

187 h = self. sel_encoder . forward (h)
188 # this is h_s
189 # batch_size x 128
190

191 # there are 6 decoders in self. sel_decoders
192 # each is a linear with output size of 18
193

194 outs = [decoder . forward (h) for decoder in self. sel_decoders]
195 out = torch.cat(outs , 0)
196 # this is equation (9) in the paper
197 # 6 x 18
198 return out
199

200 def forward (self , inpt , ctx):
201 # ctx is 6 x 1
202 # inpt is n_words x 1
203 ctx_h = self. forward_context (ctx) # 1 x 1 x 64
204

205 lang_h = self. zero_h (
206 ctx_h.size (1) , self.args. nhid_lang
207) # 1 x 1 x 128 all zeros
208 # initial hidden state of the second GRU
209

210 inpt_emb = self. word_encoder (inpt) # n_words x 256
211 inpt_emb = self. word_encoder_dropout (inpt_emb)
212

213 out , lang_hs = self. forward_lm (inpt_emb , lang_h , ctx_h)
214 sel_out = self. forward_selection (inpt_emb , lang_hs , ctx_h)
215 return out , sel_out

Code 12: Monte Carlo Tree Search Agent Class
1 class RnnMCTSAgent (RnnAgent):
2 def __init__ (self , model ,args , name="Alice", train=False , diverse =False):
3 super(RnnMCTSAgent , self). __init__ (model , args , name)
4 # add variables to store the number of MCTS
5 self.nsim = 50
6 self. rollout_len = 100
7 self. n_tries = 5
8

9 def pickNode (self , curr_node : Node):
10 ’’’
11 picks max ucb node
12 ’’’
13 max_ucb = -math.inf
14 selection = None
15 for child in curr_node . children :
16 curr_ucb = child. get_ucb ()
17 if curr_ucb > max_ucb :
18 max_ucb = curr_ucb
19 selection = child
20 return selection
21

22 def expansion (self , curr_node : Node):
23 """

22

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

24 goes through all nodes until it reaches a leaf
25 """
26 if not curr_node . children :
27 return curr_node
28 selection = self. pickNode (curr_node)
29 return self. expansion (selection)
30

31

32 def backprop (self , curr_node : Node , score: float):
33 """
34 backpropagate scores throughout the tree
35 """
36 while True:
37 curr_node .score += score
38 curr_node .n += 1
39 if not curr_node . parent :
40 break
41 curr_node = curr_node . parent
42 return curr_node
43

44 def get_all_children_states (self , curr_node : Node , n_tries : int):
45 """
46 get a few possible dialogues given the current state
47 """
48 children = []
49 prev_moves = []
50 for _ in range(n_tries):
51 _, move , move_lang_h , move_lang_hs = self.model.write(
52 curr_node .lang_h , self.ctx_h , self. rollout_len , self.args.

temperature)
53 is_selection = len(move) == 1 and \
54 self.model. word_dict . get_word (move.data [0][0]) == ’<selection >’
55 if not any ([torch.equal(move ,x) for x in prev_moves]):
56 children . append (Node(parent = curr_node , lang_h = move_lang_h ,

lang_hs = move_lang_hs , move = move , sel= is_selection))
57 prev_moves . append (move)
58 return children
59

60 def prepare_words (self , combined_words):
61 """
62 get words in the right format to be passed to _choose1
63 """
64 res = []
65 start = 0
66 end = 0
67 for i in range(combined_words .size (0)):
68 if combined_words [i, :] == 0:
69 end = i + 1
70 res. append (combined_words [start:end , :])
71 start = end
72 return res
73

74 def _choose1 (self , sents , sample =False):
75 lens , rev_idxs , hid_idxs = self. _make_idxs (sents)
76 sel_out = self. sel_model . forward (sents , lens , rev_idxs , hid_idxs ,

Variable (self.ctx))

23

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

77

78 choices = self. domain . generate_choices (self.context , with_disagreement =
True)

79

80 choices_logits = []
81 for i in range(self. domain . selection_length ()):
82 idxs = [self. sel_model . item_dict . get_idx (c[i]) for c in choices]
83 idxs = Variable (torch. Tensor (idxs).long ())
84 choices_logits . append (torch. gather (sel_out [i], 0, idxs). unsqueeze

(1))
85

86 choice_logit = torch.sum(torch.cat(choices_logits , 1), 1, keepdim =True)
. squeeze (1)

87 choice_logit = choice_logit .sub(choice_logit .max (0) [0]. item ())
88 prob = F. softmax (choice_logit , dim =0)
89

90 if sample :
91 idx = prob. multinomial (1). detach ()
92 logprob = F. log_softmax (choice_logit , dim =0). gather (0, idx)
93 else:
94 _, idx = prob.max (0, keepdim =True)
95 logprob = None
96

97 p_agree = prob[idx.item ()]
98

99 # Pick only your choice
100 return choices [idx.item ()][: self. domain . selection_length ()], logprob ,

p_agree .item ()
101

102 def write(self , max_words):
103 """
104 new write method for generating turn
105 """
106 root = Node(lang_h = self. lang_h)
107 root. children = self. get_all_children_states (root , self. n_tries)
108

109 for _ in range(self.nsim):
110 score = 0
111 ’’’
112 get max node for traversal
113 ’’’
114 candidate = self. expansion (root)
115

116 if candidate .n != 0:
117 candidate . children = self. get_all_children_states (candidate ,

self. n_tries)
118 candidate = candidate . children [0]
119

120

121 combined_words = self.words + [self.model. word2var (’YOU:’),
candidate .outs]

122 # print(combined_words)
123 if not candidate . is_selection :
124 """"
125 do full rollout and get the score if its not a terminal node
126 """

24

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

127 _, rollout , _, rollout_lang_hs = self.model.write(
128 candidate .lang_h , self.ctx_h , self. rollout_len , self.

args. temperature ,
129 stop_tokens =[’<selection >’], resume =True)
130 combined_words += [rollout]
131

132 combined_words = [(lambda x: x. unsqueeze (1) if len(x.size ()) == 1
else x)(x) for x in combined_words]

133 combined_words = torch.cat(combined_words , dim = 0)
134 combined_words = self. prepare_words (combined_words)
135 rollout_choice , _, p_agree = self. _choose1 (sents= combined_words ,

sample =False)
136 rollout_score = self. domain .score(self.context , rollout_choice)
137 # score += p_agree * rollout_score
138 score += rollout_score
139

140 self. backprop (candidate , score)
141

142 max_score = -math.inf
143 for child in root. children :
144 if child.score / child.n > max_score :
145 bestChild = child
146 max_score = child.score / child.n
147 self. lang_h = bestChild . lang_h
148 self. lang_hs . append (bestChild . lang_hs)
149 self.words. append (self.model. word2var (’YOU:’))
150 self.words. append (bestChild .outs)
151 self.sents. append (torch.cat ([self.model. word2var (’YOU:’). unsqueeze (1) ,

bestChild .outs], 0))
152 return self. _decode (bestChild .outs , self.model. word_dict)

Code 13: Hyperparameter Tuning
1 # define function to maximize
2 def objective (trial: optuna .trial.Trial):
3 # add arguments to be read from the command line
4 parser = argparse . ArgumentParser (description =’training script ’)
5 parser . add_argument (’--data ’, type=str , default =’data/ negotiate ’,
6 help=’location of the data corpus ’)
7 parser . add_argument (’--nembed_word ’, type=int , default =256 ,
8 help=’size of word embeddings ’)
9 parser . add_argument (’--nembed_ctx ’, type=int , default =64,

10 help=’size of context embeddings ’)
11 parser . add_argument (’--nhid_lang ’, type=int , default =256 ,
12 help=’size of the hidden state for the language module ’)
13 parser . add_argument (’--nhid_cluster ’, type=int , default =256 ,
14 help=’size of the hidden state for the language module ’)
15 parser . add_argument (’--nhid_ctx ’, type=int , default =64,
16 help=’size of the hidden state for the context module ’)
17 parser . add_argument (’--nhid_strat ’, type=int , default =64,
18 help=’size of the hidden state for the strategy module ’)
19 parser . add_argument (’--nhid_attn ’, type=int , default =64,
20 help=’size of the hidden state for the attention module ’)
21 parser . add_argument (’--nhid_sel ’, type=int , default =64,
22 help=’size of the hidden state for the selection module ’)
23 parser . add_argument (’--lr’, type=float , default =20.0 ,
24 help=’initial learning rate ’)

25

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

25 parser . add_argument (’--min_lr ’, type=float , default =1e-5,
26 help=’min threshold for learning rate annealing ’)
27 parser . add_argument (’--decay_rate ’, type=float , default =9.0 ,
28 help=’decrease learning rate by this factor ’)
29 parser . add_argument (’--decay_every ’, type=int , default =1,
30 help=’decrease learning rate after decay_every epochs ’)
31 parser . add_argument (’--momentum ’, type=float , default =0.0 ,
32 help=’momentum for sgd ’)
33 parser . add_argument (’--clip ’, type=float , default =0.2 ,
34 help=’gradient clipping ’)
35 parser . add_argument (’--dropout ’, type=float , default =0.5 ,
36 help=’dropout rate in embedding layer ’)
37 parser . add_argument (’--init_range ’, type=float , default =0.1 ,
38 help=’initialization range ’)
39 parser . add_argument (’--max_epoch ’, type=int , default =30,
40 help=’max number of epochs ’)
41 parser . add_argument (’--num_clusters ’, type=int , default =50,
42 help=’number of clusters ’)
43 parser . add_argument (’--bsz ’, type=int , default =25,
44 help=’batch size ’)
45 parser . add_argument (’--unk_threshold ’, type=int , default =20,
46 help=’minimum word frequency to be in dictionary ’)
47 parser . add_argument (’--temperature ’, type=float , default =0.1 ,
48 help=’temperature ’)
49 parser . add_argument (’-- partner_ctx_weight ’, type=float , default =0.0 ,
50 help=’selection weight ’)
51 parser . add_argument (’--sel_weight ’, type=float , default =0.6 ,
52 help=’selection weight ’)
53 parser . add_argument (’--seed ’, type=int , default =1,
54 help=’random seed ’)
55 parser . add_argument (’--cuda ’, action =’store_true ’, default =False ,
56 help=’use CUDA ’)
57 parser . add_argument (’--model_file ’, type=str , default =’’,
58 help=’path to save the final model ’)
59 parser . add_argument (’-- prediction_model_file ’, type=str , default =’’,
60 help=’path to save the prediction model ’)
61 parser . add_argument (’-- selection_model_file ’, type=str , default =’’,
62 help=’path to save the selection model ’)
63 parser . add_argument (’-- cluster_model_file ’, type=str , default =’’,
64 help=’path to save the cluster model ’)
65 parser . add_argument (’-- lang_model_file ’, type=str , default =’’,
66 help=’path to save the language model ’)
67 parser . add_argument (’--visual ’, action =’store_true ’, default =False ,
68 help=’plot graphs ’)
69 parser . add_argument (’--skip_values ’, action =’store_true ’, default =False ,
70 help=’skip values in ctx encoder ’)
71 parser . add_argument (’--model_type ’, type=str , default =’rnn_model ’,
72 help=’model type ’, choices = models . get_model_names ())
73 parser . add_argument (’--domain ’, type=str , default =’object_division ’,
74 help=’domain for the dialogue ’)
75 parser . add_argument (’--clustering ’, action =’store_true ’, default =False ,
76 help=’use clustering ’)
77 parser . add_argument (’--sep_sel ’, action =’store_true ’, default =False ,
78 help=’use separate classifiers for selection ’)
79

80 # grab the arguments from the command line

26

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

81 args = parser . parse_args ()
82

83 # use GPU and set seed
84 utils. use_cuda (args.cuda)
85 utils. set_seed (args.seed)
86

87 # set the possible range for variables to tune
88 args.clip = trial. suggest_float ("clip" ,0.25 ,0.75)
89 args. decay_every = trial. suggest_int (" decay_every ", 1, 5)
90 args. decay_rate = trial. suggest_int (" decay_rate ", 2, 10)
91 args. dropout = trial. suggest_float (" dropout ", 0.1, 0.9)
92 args. init_range = trial. suggest_float (" init_range ", 0.1, 0.5)
93 args.lr = trial. suggest_float (" initial_learning_rate ", 1e-5, 1e -2)
94 args. min_lr = trial. suggest_float (" min_learning_rate ", 1e-9,1e -6)
95 args. momentum = trial. suggest_float (" momentum ", 0, 1)
96 args. nembed_ctx = trial. suggest_categorical (" ctx_embeding ", [64 ,128 ,256])
97 args. nembed_word = trial. suggest_categorical (" word_embeding ", [64 ,128 ,256])
98 args. nhid_attn = trial. suggest_categorical (" hidden_attn_size ",

[64 ,128 ,256])
99 args. nhid_ctx = trial. suggest_categorical (" hidden_ctx_size ", [64 ,128 ,256])

100 args. nhid_lang = trial. suggest_categorical (" hidden_lang_size ",
[64 ,128 ,256])

101 args. nhid_sel = trial. suggest_categorical (" hidden_selection_size ",
[64 ,128 ,256])

102 args. sel_weight = trial. suggest_float (" selection_weight ", 0.2, 0.8)
103

104 # set the domain of the game (i.e., dividing objects between players)
105 domain = get_domain (args. domain)
106 # get the model we use for training
107 model_ty = models . get_model_type (args. model_type)
108 # get the dialogues we train on
109 corpus = model_ty . corpus_ty (domain , args.data , freq_cutoff =args.

unk_threshold ,
110 verbose =True , sep_sel =args. sep_sel)
111 # initialize the model
112 model = model_ty (corpus .word_dict , corpus . item_dict_old ,
113 corpus . context_dict , corpus .count_dict , args)
114 if args.cuda:
115 model.cuda ()
116 # initialize the engine (the object that actually trains the model)
117 engine = model_ty . engine_ty (model , args , verbose =True)
118 # train the model
119 train_loss , valid_loss , select_loss , extra = engine .train(corpus)
120 # save the model
121 utils. save_model (engine . get_model (), args. model_file)
122

123 return valid_loss
124

125

126 # define how we will optimize our objective function
127 study = optuna . create_study (direction = ’minimize ’, sampler = optuna . samplers .

TPESampler (seed =4850))
128 # find the best hyperparameters
129 study. optimize (objective , n_trials =1000)
130 # print the best parameters
131 print(study. best_trial)

27

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

Code 14: Class to Create Dialogues Between Two Players
1 class Dialog (object):
2 def __init__ (self , agents , args):
3 # For now we only suppport dialog of 2 agents
4 assert len(agents) == 2
5 self. agents = agents
6 self.args = args
7 self. domain = domain . get_domain (args. domain)
8 self. metrics = MetricsContainer ()
9 self. _register_metrics ()

10

11 def _register_metrics (self):
12 self. metrics . register_average (’dialog_len ’)
13 self. metrics . register_average (’sent_len ’)
14 self. metrics . register_percentage (’agree ’)
15 self. metrics . register_moving_percentage (’moving_agree ’)
16 self. metrics . register_average (’advantage ’)
17 self. metrics . register_moving_average (’moving_advantage ’)
18 self. metrics . register_time (’time ’)
19 self. metrics . register_average (’comb_rew ’)
20 self. metrics . register_average (’agree_comb_rew ’)
21 for agent in self. agents :
22 self. metrics . register_average (’%s_rew ’ % agent.name)
23 self. metrics . register_moving_average (’% s_moving_rew ’ % agent.name)
24 self. metrics . register_average (’agree_ %s_rew ’ % agent.name)
25 self. metrics . register_percentage (’%s_sel ’ % agent.name)
26 self. metrics . register_uniqueness (’% s_unique ’ % agent.name)
27 # text metrics
28 if self.args. ref_text :
29 ref_text = ’ ’.join(data. read_lines (self.args. ref_text))
30 self. metrics . register_ngram (’full_match ’, text= ref_text)
31

32 def _is_selection (self , out):
33 return len(out) == 1 and (out [0] in [’<selection >’, ’<no_agreement >’])
34

35 def show_metrics (self):
36 return ’ ’.join ([’%s=%s’ % (k, v) for k, v in self. metrics .dict ().items

()])
37

38 def run(self , ctxs , logger , max_words =5000) :
39 self. agents [0]. model.train ()
40 assert len(self. agents) == len(ctxs)
41 for agent , ctx , partner_ctx in zip(self.agents , ctxs , reversed (ctxs)):
42 agent. feed_context (ctx)
43 agent. feed_partner_context (partner_ctx)
44 logger . dump_ctx (agent.name , ctx)
45 logger .dump(’-’ * 80)
46

47 # Choose who goes first by random
48 if np. random .rand () < 0.5:
49 writer , reader = self. agents
50 else:
51 reader , writer = self. agents
52

53 conv = []
54 self. metrics .reset ()

28

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

55

56 # words_left = np. random . randint (50, 200)
57 words_left = max_words
58 length = 0
59 expired = False
60 while True:
61 out = writer .write(max_words = words_left)
62 words_left -= len(out)
63 length += len(out)
64

65 self. metrics . record (’sent_len ’, len(out))
66 if ’full_match ’ in self. metrics . metrics :
67 self. metrics . record (’full_match ’, out)
68 self. metrics . record (’% s_unique ’ % writer .name , out)
69

70 conv. append (out)
71 reader .read(out)
72 if not writer .human:
73 logger . dump_sent (writer .name , out)
74

75 if self. _is_selection (out):
76 self. metrics . record (’%s_sel ’ % writer .name , 1)
77 self. metrics . record (’%s_sel ’ % reader .name , 0)
78 break
79

80 if words_left <= 1:
81 break
82

83 writer , reader = reader , writer
84

85

86 choices = []
87 for agent in self. agents :
88 choice = agent. choose ()
89 choices . append (choice)
90 logger . dump_choice (agent.name , choice [: self. domain .

selection_length () // 2])
91

92 agree , rewards = self. domain . score_choices (choices , ctxs)
93 if expired :
94 agree = False
95 logger .dump(’-’ * 80)
96 logger . dump_agreement (agree)
97 for i, (agent , reward) in enumerate (zip(self.agents , rewards)):
98 logger . dump_reward (agent.name , agree , reward)
99 j = 1 if i == 0 else 0

100 agent. update (agree , reward , choice = choices [i],
101 partner_choice = choices [j], partner_input =ctxs[j],

partner_reward = rewards [j])
102

103 if agree:
104 self. metrics . record (’advantage ’, rewards [0] - rewards [1])
105 self. metrics . record (’moving_advantage ’, rewards [0] - rewards [1])
106 self. metrics . record (’agree_comb_rew ’, np.sum(rewards))
107 for agent , reward in zip(self.agents , rewards):
108 self. metrics . record (’agree_ %s_rew ’ % agent.name , reward)

29

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

109

110 self. metrics . record (’time ’)
111 self. metrics . record (’dialog_len ’, len(conv))
112 self. metrics . record (’agree ’, int(agree))
113 self. metrics . record (’moving_agree ’, int(agree))
114 self. metrics . record (’comb_rew ’, np.sum(rewards) if agree else 0)
115 for agent , reward in zip(self.agents , rewards):
116 self. metrics . record (’%s_rew ’ % agent.name , reward if agree else 0)
117 self. metrics . record (’% s_moving_rew ’ % agent.name , reward if agree

else 0)
118

119 logger .dump(’-’ * 80)
120 logger .dump(self. show_metrics ())
121 logger .dump(’-’ * 80)
122 for ctx , choice in zip(ctxs , choices):
123 logger .dump(’debug: %s %s’ % (’ ’.join(ctx), ’ ’.join(choice)))
124

125 return conv , agree , rewards

Code 15: Class for Reinforcement Learning
1 class Reinforce (object):
2 def __init__ (self , dialog , ctx_gen , args , engine , corpus , logger =None):
3 self. dialog = dialog
4 self. ctx_gen = ctx_gen
5 self.args = args
6 self. engine = engine
7 self. corpus = corpus
8 self. logger = logger if logger else DialogLogger ()
9

10 def run(self):
11 validset , validset_stats = self. corpus . valid_dataset (self.args.bsz)
12 trainset , trainset_stats = self. corpus . train_dataset (self.args.bsz)
13

14 n = 0
15 for ctxs in self. ctx_gen .iter(self.args. nepoch):
16 n += 1
17 if self.args. sv_train_freq > 0 and n % self.args. sv_train_freq ==

0:
18 batch = random . choice (trainset)
19 self. engine .model.train ()
20 self. engine . train_batch (batch)
21 self. engine .model.eval ()
22 self. logger .dump(’=’ * 80)
23 self. engine .model.train ()
24 self. dialog .run(ctxs , self. logger)
25 self. logger .dump(’=’ * 80)
26 self. logger .dump(’’)
27 if n % 100 == 0:
28 self. logger .dump(’%d: %s’ % (n, self. dialog . show_metrics ()),

forced =True)
29

30 def dump_stats (dataset , stats , name):
31 loss , select_loss = self. engine . valid_pass (N, dataset , stats)
32 self. logger .dump(’final: % s_loss %.3f %s_ppl %.3f’ % (
33 name , float(loss), name , np.exp(float(loss))),
34 forced =True)

30

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

35 self. logger .dump(’final: % s_select_loss %.3f % s_select_ppl %.3f’ %
(

36 name , float(select_loss), name , np.exp(float(select_loss))),
37 forced =True)
38

39 dump_stats (trainset , trainset_stats , ’train ’)
40 dump_stats (validset , validset_stats , ’valid ’)
41

42 self. logger .dump(’final: %s’ % self. dialog . show_metrics (), forced =True)

Code 16: Agent Class for Reinforcement Learning
1 class RlAgent (RnnAgent):
2 def __init__ (self , model , args , name=’Alice ’, train=False):
3 self.train = train
4 super(RlAgent , self). __init__ (model , args , name=name)
5 self.model.train ()
6 self. sel_model .train ()
7 self.opt = optim. RMSprop (
8 self.model. parameters (),
9 lr=args.rl_lr ,

10 momentum =self.args. momentum)
11

12 self. all_rewards = []
13

14 if self.args. visual :
15 self. model_plot = vis. ModulePlot (self.model , plot_weight =False ,

plot_grad =True)
16 self. agree_plot = vis.Plot ([’agree ’,], ’agree ’, ’agree ’)
17 self. reward_plot = vis.Plot(
18 [’reward ’, ’partner_reward ’], ’reward ’, ’reward ’)
19 self. loss_plot = vis.Plot ([’loss ’,], ’loss ’, ’loss ’)
20 self. agree_reward_plot = vis.Plot(
21 [’reward ’, ’partner_reward ’], ’agree_reward ’, ’agree_reward ’)
22 self.t = 0
23

24 def feed_context (self , ctx):
25 super(RlAgent , self). feed_context (ctx)
26 self. logprobs = []
27

28 def write(self , max_words):
29 logprobs , outs , self.lang_h , lang_hs = self.model.write(self.lang_h ,

self.ctx_h ,
30 100, self.args. temperature)
31 self. logprobs . extend (logprobs)
32 self. lang_hs . append (lang_hs)
33 self.words. append (self.model. word2var (’YOU:’). unsqueeze (0))
34 self.words. append (outs)
35 assert (torch.cat(self.words).size () [0] == torch.cat(self. lang_hs).size

() [0])
36 return self. _decode (outs , self.model. word_dict)
37

38 def choose (self):
39 if self.args.eps < np. random .rand ():
40 choice , _, _ = self. _choose (sample =False)
41 else:
42 choice , logprob , _ = self. _choose (sample =True)

31

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

43 self. logprobs . append (logprob)
44 return choice
45

46 def update (self , agree , reward , choice =None , partner_choice =None ,
partner_input =None , partner_reward =None):

47 if not self.train:
48 return
49

50 self.t += 1
51 if len(self. logprobs) == 0:
52 return
53 reward_agree = reward
54 partner_reward_agree = partner_reward
55

56 reward = reward if agree else 0
57 partner_reward = partner_reward if agree else 0
58

59 diff = reward - partner_reward
60 self. all_rewards . append (diff)
61 #self. all_rewards . append (reward)
62 r = (diff - np.mean(self. all_rewards)) / max (1e-4, np.std(self.

all_rewards))
63 g = Variable (torch.zeros (1, 1).fill_(r))
64 rewards = []
65 for _ in self. logprobs :
66 rewards . insert (0, g)
67 g = g * self.args.gamma
68

69 loss = 0
70 for lp , r in zip(self.logprobs , rewards):
71 loss -= lp * r
72

73 self.opt. zero_grad ()
74 loss. backward ()
75 nn.utils. clip_grad_norm (self.model. parameters (), self.args. rl_clip)
76 if self.args. visual and self.t % 10 == 0:
77 self. model_plot . update (self.t)
78 self. agree_plot . update (’agree ’, self.t, int(agree))
79 self. reward_plot . update (’reward ’, self.t, reward)
80 self. reward_plot . update (’partner_reward ’, self.t, partner_reward)
81 self. agree_reward_plot . update (’reward ’, self.t, reward_agree)
82 self. agree_reward_plot . update (’partner_reward ’, self.t,

partner_reward_agree)
83 self. loss_plot . update (’loss ’, self.t, loss.data [0][0])
84

85 self.opt.step ()

32

Emiliano Penaloza & Anthony Rinaldi Final Report - SS4850

8 References

[1] Adrian Furnham and Hua Chu Boo. A literature review of the anchoring effect. The Journal
of Socio-Economics, 40(1):35–42, 2011.

[2] Sylvain Gelly, Levente Kocsis, Marc Schoenauer, Michèle Sebag, David Silver, Csaba
Szepesvári, and Olivier Teytaud. The grand challenge of computer go. Communications of
the ACM, 55(3):106–113, 2012.

[3] Daniel Kahneman, Jack L Knetsch, and Richard H Thaler. Anomalies: The endowment effect,
loss aversion, and status quo bias. Journal of Economic Perspectives, 5(1):193–206, 1991.

[4] Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi Inaguma, Ziyan Jiang,
Masao Someki, Nelson Enrique Yalta Soplin, Ryuichi Yamamoto, Xiaofei Wang, Shinji Watan-
abe, Takenori Yoshimura, and Wangyou Zhang. A comparative study on transformer vs RNN
in speech applications. CoRR, abs/1909.06317, 2019.

[5] Mike Lewis, Denis Yarats, Yann N. Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal?
end-to-end learning for negotiation dialogues. CoRR, abs/1706.05125, 2017.

[6] Alan Strudler. On the ethics of deception in negotiation. Business Ethics Quarterly,
5(4):805–822, Oct 1995.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Conference on Neural Informa-
tion Processing Systems, 31, 2017.

33

	Introduction
	Dataset
	Methods
	Exploratory Data Analysis
	Existing Methods
	Transformers vs GRUs
	Monte Carlo Tree Search
	Proposed Models
	Training Setting
	Testing Setting

	Results
	Exploratory Data Analysis
	Main Data Analysis

	Conclusion and Discussion
	Future Works
	Appendix
	References

